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Durrës, Albania
anjeza.krakulli@gmail.com

Elton Pasku
Department of Mathematics
Faculty of Natural Sciences

University of Tirana
Tirana, Albania

elton.pasku@fshn.edu.al

Abstract. We give algebraic characterizations for a reduction system to be respectively Noether-
ian and confluent, and for a Noetherian reduction system to be confluent. The characterization

of a confluent reduction system (A,→) is based on a relationship between the confluence of the

system and the exactness of the colimit functor colim : AbA → Ab where A is the small category
with objects the elements of A and arrows a→ b whenever b is a consequence of a in the system.

1. Introduction

The aim of this paper is to express in algebraic terms the termination and confluence of a reduc-
tion system. Three algebraic characterizations for a reduction system (A,→) are given, theorems
2 and 3 which give sufficient and necessary conditions for (A,→) to be respectively noetherian and
confluent, and theorem 5 which gives sufficient and necessary conditions under which a Noetherian
reduction system is confluent. For the first two characterizations we use a few results from [8]
regarding a unitary ring [C] which is always associated to a small additive category C. First we
explain how the ring is defined and than we mention the results. The underlying set of [C] is the
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set of |C|× |C| matrices of the form [αp,q] where αp,q ∈ C(p, q) and each row and column has finitely
many nonzero entries. The addition and multiplication in [C] are defined by using the addition and
composition in C in the following way

[αp,q] + [βp,q] = [αp,q + βp,q] and [αp,q] · [βp,q] = [γa,b] where γa,b =
∑
c∈|C|

αa,c · βc,b.

It is shown in theorems 7.1 and 7.1* of [8] that the category of right modules Ab[C] is related to the
category of covariant additive functors AbC via exact functors

(1) Ab[C]
T // AbC

R, S
oo

where R and S are respectively right and left adjoint for T . Likewise, for the contravariant case
there are adjoint pairs

(2) Ab[C]
∗ T∗

// AbC
∗

R∗, S∗
oo .

As we make use of S∗ and R, we recall here briefly that for any F ∈ AbC∗ , S∗(F ) = ⊕
q∈|C|

F (q) and

the action of α = [αp,q] on S∗(F ) is given by

αuq =
∑
p∈|C|

upF (αp,q),

where uq is the coproduct injection. Similarly, R(F ) =
∏
q∈|C|

F (q) with the action of matrices on the

right defined in a similar fashion to the above. Using the above adjunctions, it is shown that for
every F ∈ AbC and G ∈ AbC∗ there is a natural equivalence

(3) SF ⊗[C] S
∗G ' F ⊗C G.

For the second characterization, apart from the above results from [8], we use a result of Isbell and
Mitchell in [6] which states that categories C for which the colimit functor colim : AbC → Ab is exact,
are precisely those categories whose affinization aff C has filtered components. Here the affinization
of C is the (nonadditive) subcategory of ZC consisting of those morphisms whose integer coefficients
sum to 1. In general we have C ⊆ aff C, with the equality if and only if C is a preordered set. Being
filtered means two things, first any pair of objects map to a common object, and secondly, for any
two morphism α1, α2 with the same domain and codomain, there exists β such that βα1 = βα2.
For preordered sets the second condition is superfluous.

A special case of reduction systems are those arising from monoid presentations. If P = 〈x, r〉
is a presentation of a monoid S, then associated to it there is the reduction system (x∗,→) where
x∗ is the free monoid on x and → is made of pairs (uαv, uβv) where (α, β) ∈ r and u, v ∈ x∗. In
fact this reduction system can be regarded as a disjoint union t

s∈S
〈Ps,→s〉 of reduction systems

〈Ps,→s〉, where Ps is the subset of those elements from x∗ which represent the element s ∈ S, and
→s consists of those pairs of → with both coordinates inside Ps. If it happens that P represents
a group G, it is interesting to ask if the confluence of Pe (e is the unit of G) implies that of Pg
for every g ∈ G. We call the presentation P = 〈x, r〉 of G a λ-confluent presentation whenever the
reduction system Pe is confluent. Here λ is the empty word representing the unit e. We use the
result of theorem 3 and proposition 4.1.2, p. 117 of [4] to give a sufficient and necessary condition
under which the λ-confluence of a monoid presentation P = 〈x, r〉 of a group implies the confluence
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of P in the special case when (Pe,→e) is complete, that is confluent and Noetherian. In fact the
termination of Pe implies that of Pg for if x̃ is a word representing g−1, and if ρ is an infinite
sequence of reductions in Pg, then x̃ρ will be an infinite sequence of reductions in Pe. Proposition
4.1.2 states that if ϕ : Λ→ Γ is a ring homomorphism, A a right Γ module, C a left Λ module, and
if TorΛ

p (Γ, C) = 0 for every p > 0, then

(4) TorΛ
n(A,C) ' TorΓ

n(A,(ϕ) C)

where (ϕ)C = Γ ⊗Λ C. Note that the isomorphism (4) holds true even in the case when Γ and A,
regarded as right Λ modules, are not unitary, therefore we do not need to assume that ϕ : Λ→ Γ is a
ring homomorphism which sends the unit 1Λ of Λ to the unit 1Γ of Γ. Along the proof of proposition
4, we use from [4] (see on page 149) the following definition. If Λ and Γ are two augmented rings
with respective augmentations εΛ : Λ → QΛ, εΓ : Γ → QΓ, and ϕ : Γ → Λ a map of augmented
rings, then there is a map

Ψ : Γ⊗Λ QΛ → QΓ

defined by Ψ(γ ⊗ x) = γ · ψ(x) where ψ : QΛ → QΓ is the map induced by ϕ. Again, the definition
of Ψ is still possible under the assumption that Γ is non unitary as a right Λ module via ϕ.

As we mentioned at the beginning of the introduction, our main objective is to characterize alge-
braically important notions of the theory of rewriting systems such as confluence and termination
proving that such notions are in fact algebraic in nature. Before we explain below the significance
of our results, we recall that associated to a reduction system (A,→) there is the reduction graph
ΓA with vertex set V (ΓA) = A and set of edges

E(ΓA) = {(a, b) : a ∈ A, b ∈ A if there is a reduction rule a→ b}.
Further, we denote by FΓA the free category generated by ΓA, by ZFΓA the additive category
arising from FΓA and finally by [ZFΓA] the ring associated with ZFΓA.
Theorem 2 identifies the termination of a reduction system to a chain condition of principal right
ideals in a semigroup arising from the system. More specifically, given a finitely branching reduction
system (A,→), that is a system in which every element has finitely many descendants, we denote
by RA the multiplicative subsemigroup of the monoid ([ZFΓA], ·) consisting of all those matrices
E with finitely many nonzero entries with the additional property that for any a ∈ A, Ea,a 6= z · 1a
where 1a is the identity on a in FΓA and z ∈ Z. Our theorem then states that the system is
Noetherian if and only if every descending chain of principal right ideals of (RA, ·) terminates.
Theorem 3 identifies the confluence of a reduction system (A,→) with the flatness of a certain
module arising from the system. More specifically we let A be the preorder arising from FΓA
by identifying the parallel arrows and then consider the adjoint situation (2). Theorem 3 then
states that (A,→) is confluent if and only if S∗∆Z is a flat [ZA]∗ module, where ∆Z is the constant
functor at Z over ZA∗. Proposition 4 is an attempt to get an application of Theorem 3 to the specific
situation where the reduction system arises from a monoid presentation P = 〈x, r〉 of a group G.
The problem we try to shade some light on in this proposition, is the so called the problem of
λ-confluence which asks under what conditions the confluence of Pe implies the confluence of Pg
for any g ∈ G. We prove, under the assumption that (Pe,→e) is complete, that for every g ∈ G,
(Pg,→g) is confluent if and only if there is an irreducible v ∈ Pg such that (ϕv)S

∗
e∆Z ∼= S∗g∆Z.

Our final result is Theorem 5 which relates the confluence of a Noetherian reduction system (A,→)
to the algebraic structure of the so called reduction monoid P arising from the system. The monoid
P is defined as follows

P = {τ ∈ T (A) : τ(u) = v only if v is a descendant of u or u = v},
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where T (A) is the full transformation monoid on A, and the operation in P is the usual composition
of transformations. Our theorem then states that (A,→) is complete if and only if the reduction
monoid P has a zero element.
We note that the above results connect different areas of pure mathematics, respectively the theory
of semigroups and homological algebra to that of rewriting systems. We hope that these connections
we have presented here will become helpful in the future in treating problems of rewriting systems.

2. Noetherian reduction systems

Let (A,→) be a reduction system which is finitely branching. This class of reduction systems is of
interest because it includes for example the reduction systems arising from semigroup presentations
with finitely many relations.

Lemma 1. If (A,→) is a Noetherian and finitely branching reduction system, then for every a ∈ A,
there is na ∈ N such that the length of any path in ΓA from a to a successor of a does not exceed
na.

Proof. Since in such systems every element has finitely many successors, then for every a ∈ A there
are finitely many paths in ΓA from a to successors of a. If we take na to be the maximum of the
lengths of those paths, this will do. �

Denote by RA the multiplicative subsemigroup of the monoid ([ZFΓA], ·) consisting of all those
matrices E with finitely many nonzero entries with the additional property that for any a ∈ A,
Ea,a 6= z · 1a where 1a is the identity on a in FΓA and z ∈ Z.

Theorem 2. A finitely branching reduction system (A,→) is Noetherian if and only if every de-
scending chain of principal right ideals of (RA, ·) terminates.

Proof. Let

E(0) ∪ E(0) ·RA ⊇ E(1) ∪ E(1) ·RA ⊇ · · · ⊇ E(n) ∪ E(n) ·RA ⊇ E(n+1) ∪ E(n+1) ·RA ⊇ · · ·

be a descending chain of principal right ideals of RA. For i ∈ N we let Q(i) ∈ RA be such that

(5) E(i) = E(i−1) ·Q(i).

Using (5), one can show by recursion that

(6) E
(n)
a,b =

∑
an∈A

· · ·
∑
a1∈A

E(0)
a,a1 ·Q

(1)
a1,a2 · · ·Q

(n−1)
an−1,an ·Q

(n)
an,b

.

From the definition of RA, each of the n + 1 factors of a nonzero term of (6) is made of linear
combinations of respectively elements from HomFΓA

(a, a1), HomFΓA
(ai, ai+1) and HomFΓA

(an, b)
with integers. If we take one component from each of the above hom-sets that take part in the
formation of the terms of (6) we obtain a path in ΓA of the form

(7) a→ a1 → a2 → · · · → an → b

whose length is n+1 since none of the arrows represented in (7) arises from an identity morphism in
FΓA. Let Ei be the subset of A corresponding to the rows of E(i) which contain nonzero elements.
It is easy to see from (5) that Ei ⊆ E0. We claim that

∀a ∈ E0,∃na ∈ N, such that ∀b ∈ A with E
(na)
a,b = 0.
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Indeed, take na as in Lemma 1. Then, path (7) have length na + 1 > na, therefore the term that
gave rise (7) could not have been nonzero. Let now n = max{na : a ∈ E0}. From the above claim

we get that E
(n)
a,b = 0 for all a ∈ E0 and b ∈ A, therefore E(n) is the zero matrix.

Conversely, suppose that every descending chain of principal right ideals of RA terminates and
assume that there exist an infinite path

e1 · e2 · · · en · en+1 · ··

in ΓA. Define matrices from RA as follows

E(n) = [εa,b] where εa,b =

{
e1 · · · en if a = ι(e1) and b = τ(en)

0 otherwise

It is now obvious that E(n+1) ⊆ E(n) · RA and that E(n) /∈ E(n+1) · RA which shows that the
descending chain

E(1) ∪ E(1) ·RA ⊇ · · · ⊇ E(n) ∪ E(n) ·RA ⊇ E(n+1) ∪ E(n+1) ·RA ⊇ · · ·

does not terminate, a contradiction. �

3. Confluent reduction systems

As before we let FΓA be the free category generated by the reduction graph associated with
the reduction system (A,→). Let A be the quotient FΓA/ ∼ where ∼ is the congruence generated
by all the pairs (α, β) with α, β ∈ FΓA(a, b) and a, b varying in A. In this way A becomes a
preordered set and in this case the elements of [ZA] have a simple form: they are A× A matrices
[αp,q] where αp,q ∈ Z and each row and column has finitely many nonzero entries. If an entry αp,q
is nonzero, then q is a consequence of p in the system (A,→). Remark here that the confluence of
(A,→) is equivalent to aff A having filtered components, therefore instead of looking directly for
the confluence of (A,→), one should look for conditions under which aff A has filtered components.
We give such a condition in terms of [ZA] and for this purpose we note first that the adjunctions
(1) and (2) to the case of the small additive category ZA become

(8) Ab[ZA]
T // AbZA

R, S
oo

and

(9) Ab[ZA]∗
T∗

// AbZA
∗

R∗, S∗
oo .

Theorem 3. The reduction system (A,→) is confluent if and only if S∗∆Z is a flat [ZA]∗ module,
where ∆Z is the constant functor at Z over ZA∗.

Proof. For every G ∈ AbZA∗
, every M ∈ Ab[ZA] and every abelian group B, the following natural

equivalences hold true

Ab(S∗G⊗[ZA]∗ M,B) ' Ab[ZA](M,Ab(S∗G,B))

' Ab[ZA](M,RAb(G,B))

' AbZA(TM,Ab(G,B))

' Ab(G⊗ZA∗ TM,B).
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Then from Yoneda lemma there must be a natural equivalence

(10) S∗G⊗[ZA]∗ M ' G⊗ZA∗ TM.

If we assume now that (A,→) is confluent, then aff A has filtered components and then from [6] the
functor ∆Z is flat as a right ZA∗ module. We want to show that S∗∆Z is flat, that is, if M → N is
an injection in Ab[ZA], then the induced morphism S∗∆Z⊗[ZA]∗M → S∗∆Z⊗[ZA]∗N is an injection
in Ab. To see this we can use the naturality of (10) by replacing G with ∆Z and then obtaining
the commutative diagram

S∗∆Z⊗[ZA]∗ M // S∗∆Z⊗[ZA]∗ N

∆Z⊗ZA∗ TM // ∆Z⊗ZA∗ TN

whose vertical arrows are isomorphisms and the bottom arrow is an injection since T preserves
injections and ∆Z is flat.

Conversely, suppose that S∗∆Z is flat and want to show that for any injection F1 → F2 in AbZA,
the induced morphism ∆Z ⊗ZA∗ F1 → ∆Z ⊗ZA∗ F2 is an injection in Ab. If we apply the natural
equivalence (3) to the case when C = ZA and G = ∆Z, we get the commutative square

S∗∆Z⊗[ZA]∗ SF1
// S∗∆Z⊗[ZA]∗ SF2

∆Z⊗ZA∗ F1
// ∆Z⊗ZA∗ F2

with the vertical arrows being isomorphisms. Since S is an exact functor and S∗∆Z is flat, the
top arrow is an injection, therefore the bottom one will be an injection too proving the flatness of
∆Z. �

4. A discussion on λ-confluence

As we characterized the confluence of a reduction system in terms of the flatness of a certain
module arising from the system, then it is natural to use this characterization to obtain information
on the confluence of some particular reduction systems. We focus on those reduction systems arising
from monoid presentations which give groups with the intention to find conditions under which the
corresponding reduction system is confluent.
Let P = 〈x, r〉 be a monoid presentation for a group G and let (Pe,→e) and (Pg,→g) be the
reduction systems corresponding to the unit element e and to some g ∈ G, g 6= e. Assume
throughout that (Pe,→e) is complete, therefore as we mentioned in the introduction, (Pg,→g)
will be terminating. We let Ig be the set of irreducible words representing g. Denote by Λ the ring
[Z (FΓPe/ ∼)] and by Γ the ring [Z

(
FΓPg/ ∼

)
] where ∼ is defined as before. Let for any g ∈ G

denote by R∗g∆Z, S∗g∆Z the modules from AbΓ
∗

defined in (9). Define

εΛ : Λ→ R∗e∆Z

by setting for every matrix α = [αp,q] ∈ Λ,

πpεΛ(α) =
∑
q∈Pe

αp,q
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where πp is the p’th projection. This definition makes sense since α is row finite. It is obviously
a group homomorphism and surjective since for every b ∈ R∗e∆Z if we take α ∈ Λ such that
αp,p = πp(b) for every p ∈ Pe, and αp,q = 0 for p 6= q, then from the definition of εΛ we see that
εΛ(α) = b. To see that εΛ is a homomorphism of left modules we must prove that for every α, β ∈ Λ
and every p ∈ Pe, πpεΛ(α · β) = πp(α · εΛ(β)). Indeed,

πpεΛ(α · β) =
∑
s∈Pe

∑
q∈Pe

αp,qβq,s,

and

πp(α · εΛ(β)) =
∑
q∈Pe

αp,q
∑
s∈Pe

βq,s,

which are equal to each other. We note that the augmentation ideal IΛ consists in those matrices
whose row elements sum to zero. In a similar fashion we define an augmentation homomorphism
εΓ : Γ → R∗g∆Z whose augmentation ideal IΓ again consists in those matrices from Γ whose row
elements sum to zero. For every [αp,q] ∈ Λ and every v ∈ Ig, denote by v · [αp,q] the matrix from Γ
whose only nonzero entries are those αvp,vq = αp,q whenever αp,q is nonzero. For each v ∈ Ig define

ϕv : Λ→ Γ

by

ϕv(α) = v · α.
It is easy to see that ϕv is a homomorphism of rings. Also from the definition of ϕv we see
that ϕv(IΛ) ⊆ IΓ hence it is a map of augmented rings and therefore it induces a Λ module
homomorphism ψv : R∗e∆Z→ R∗g∆Z if we regard R∗g∆Z as a left Λ module via ϕv. As mentioned
in the introduction, ψv induces a homomorphism of left Γ modules

Ψv : (ϕv)R
∗
e∆Z→ R∗g∆Z

defined by

Ψv(γ ⊗ a) = γ · ψv(a).

Now using the fact that S∗e∆Z and S∗g∆Z are submodules of respectively R∗e∆Z and R∗g∆Z, and
the (easily checking) fact that for every v ∈ Ig the only nonzero coordinates of ψv(a) are those
indexed by vu whenever πu(a) 6= 0, one can see that Ψv induces a homomorphism of left Γ modules

Ψ̃v : (ϕv)S
∗
e∆Z→ S∗g∆Z.

Note that for different v ∈ Ig, modules (ϕv)S
∗
e∆Z may be different. For their coproduct ⊕

v∈Ig
(ϕv)S

∗
e∆Z

we let

(11) Ψ̃ : ⊕
v∈Ig

(ϕv)S
∗
e∆Z→ S∗g∆Z

be the homomorphism of left Γ modules arising from the universal property of coproducts. We
show that Ψ̃ is surjective. For this we need only to prove that any generator of the abelian group
S∗g∆Z, that is any d ∈ S∗g∆Z with πw(d) = 1 for a unique w ∈ Pg, is in the image of Ψ̃. Let
v ∈ Ig be an irreducible descendant of w. Denote by γw the matrix from Γ whose only nonzero
entry is γww,v = 1 and let cw ∈ ⊕

v∈Ig
(ϕv)S

∗
e∆Z such that πξc

w 6= 0 if and only only if ξ = v and that

πvc
w = γw ⊗ aw where the only nonzero coordinate of aw is πλa

w = 1. The definition of Ψ̃ implies
that Ψ̃(cw) = Ψ̃v(γ

w ⊗ aw) = d. With the notations established above we prove the following.
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Proposition 4. Let P = 〈x, r〉 be a monoid presentation for a group G such that the reduction
system (Pe,→e) is complete, then for every g ∈ G, (Pg,→g) is confluent if and only if there is
v ∈ Ig such that (ϕv)S

∗
e∆Z ∼= S∗g∆Z.

Proof. If (Pg,→g) is confluent, then Ig is a singleton, let say Ig = {v} and in this case (11) has
the form

Ψ̃ = Ψv : (ϕv)S
∗
e∆Z→ S∗g∆Z.

Next we show that Ψ̃ is a split epimorphism of Γ modules. For this we define for each w ∈ Pg the
family of group homomorphisms

θw : Zw → (ϕv)S
∗
e∆Z,

where Zw is an isomorphic copy of the additive group Z, by

θw(1) = cw

with cw = γw ⊗ a where the only nonzero coordinate of a is πλa = 1 and the only non zero entry
of γw is γww,v = 1. Since S∗g∆Z as an abelian group is isomorphic to ⊕

w∈Pg

Zw, the family θw yields

an abelian group homomorphism

Θ : S∗g∆Z→ (ϕv)S
∗
e∆Z

such that Θuw = θw where uw is the coproduct injection. It is easy to see that Θ is a homomorphism
of Γ modules. To see that Θ splits, let d ∈ S∗g∆Z be any generator with πw(d) = 1, then we have

Ψ̃Θ(d) = Ψ̃Θuw(1)

= Ψ̃(θw(1)) = Ψ̃(cw) = d.

As a result we get the direct sum of Γ modules (ϕv)S
∗
e∆Z ∼= S∗g∆Z ⊕K where K is the kernel of

Ψ̃. But, as we just saw, any generator γw ⊗ a of (ϕv)S
∗
e∆Z is in the image of Θ, therefore Θ is

surjective, K = 0 and (ϕv)S
∗
e∆Z ∼= S∗g∆Z.

For the converse, since (Pe,→e) is confluent, then from theorem 3 S∗e∆Z is a flat left Λ module,

hence if we regard Γ as a right Λ module via ϕv for the given v ∈ Ig, we have that TorΛ
p (Γ, S∗e∆Z) = 0

for every p > 0, then from proposition 4.1.2 of [4] we obtain the isomorphisms TorΛ
n(A,S∗e∆Z) '

TorΓ
n(A, (ϕv)S

∗
e∆Z) for every n > 0 and every right Γ module A. Since TorΛ

n(A,S∗e∆Z) = 0, we
get the flatness of the left Γ module (ϕv)S

∗
e∆Z hence the flatness S∗g∆Z. Theorem 3 implies that

(Pg,→g) is confluent. �

5. Complete reduction systems

In this section we give an algebraic characterization for a Noetherian reduction system to be
confluent. Differently from the Newman’s lemma ([9]) which states that Noetherian reduction
systems are confluent if and only if they are locally confluent, our characterization translates the
confluence purely in terms of semigroup theory. First, for every reduction system (A,→), we
construct a submonoid P of the full transformation monoid T (A) on the set A as follows:

P = {τ ∈ T (A) : τ(u) = v only if v is a descendant of u or u = v}.
It is clear that, under the usual composition of transformations, P forms a submonoid of T (A).
We call P the reduction monoid of (A,→). Before we give our characterization, we recall that a
Noetherian reduction systems (A,→) is complete if and only if every element from A has a unique
irreducible descendant.
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Theorem 5. Let (A,→) be a Noetherian reduction systems. Then, (A,→) is complete if and only
if the reduction monoid P has a zero element.

Proof. If (A,→) is complete, then, for every ω ∈ A, the respective congruence class [ω] has a
unique irreducible element, say irr([ω]). Let θ ∈ P be the element which sends every ω ∈ A to its
corresponding irr([ω]). It is easy to show that θ is the zero of P .

Conversely, suppose that P has a zero element θ. Denote by Irr(ω) the set of irreducibles which
are descendants of ω, and write Irr = ∪ω∈AIrr(ω). If we think of θ as a 2 ×∞ matrix, then we
first show that the second row of θ consists only of elements from Irr. Indeed, if there is u ∈ A
such that θ(u) = v and v /∈ Irr, then for τ which sends v to some corresponding successor v′, we
would have τθ(u) = v′, which means that τθ 6= θ. Note also that in the second row we always have
represented all the elements from Irr because they are not transformed under any element of P .
Hence the second row of θ consists only of all the elements of Irr. Next we show that every ω ∈ A
has a unique irreducible descendant. Suppose by way of contradiction that there is some u ∈ A
which has a set {iλ|λ ∈ Λ} of distinct irreducible descendants. Let Kλ for λ ∈ Λ be respectively
θ−1(iλ). Suppose that u ∈ Kλ. Since iν with ν 6= λ is a descendant of u too, then there will be
some v such that v is a successor of u and iν is a descendant of v or iν = v. Distinguish between
two cases.

(1) v /∈ Kλ. Let τ ∈ P be such that it sends u to v. Then θτ(u) = θ(v) 6= iλ which contradicts
the fact that θ is the zero.

(2) v ∈ Kλ. Let τ ∈ P be such that it sends v to iν . Then θτ(v) = θ(iν) = iν 6= iλ which again
contradicts the fact that θ is the zero.

So it remains that u can not have more than one irreducible descendant and hence the system
is complete. �

Corollary 6. A Noetherian reduction system (A,→) is complete if and only if the monoid P
constructed as above, has cohomological dimension 0.

Proof. This follows immediately from Theorem 5 and from [5]. �

References

[1] F. Baader and T. Nipkow, Term Rewriting and All That, Cambridge University Press 1998

[2] R. Book and F. Otto, String-Rewriting Systems, Springer, New York 1993
[3] K. Brown, The Geometry of Rewriting Systems: A Proof of the Anick-Groves-Squier Theorem, in Algorithms

and Classifications in Combinatorial Group Theory, Berkeley 1989, Math. Sci. Res. Inst. Publ. 23 (1992) 137-163

[4] Henri Cartan and Samuel Eilenberg, Homological Algebra, Princeton University Press, 1999
[5] V. S. Guba and S. J. Pride, On the left and right cohomological dimension of monoids, Bull. London Math.

Soc. 30 (1998) 391-396

[6] Isbell, J., Mitchell, B., Exact Colimits and Fixed Points, Trans. Amer. Math. Soc. 220, 1976
[7] Y. Lafont, A. Proute, Church-Rosser property and homology of monoids, Math. Structures Comput. Sci. 1

(1991) 297-326
[8] Mitchell, B., Rings with several objects, Advances in Mathematics 8 (1972) pp. 1-161
[9] M. H. A. Newman, On theories with a combinatorial definition of ’equivalence’, Ann. of Math. 43, No. 2 (1942)

223-243
[10] C.C. Squier, F. Otto, Y. Kobayashi, A finiteness condition for rewriting systems, Theoret. Comput. Sci. 131

(1994) 271-294

c©2012Albanian J. Math. 73

http://www.aulonapress.com

	1. Introduction
	2. Noetherian reduction systems
	3. Confluent reduction systems
	4. A discussion on -confluence
	5. Complete reduction systems
	References

